Abstract
To fabricate SiO2/PDA–SO3H nanocatalyst, a suitable method is designed for the loading of sulfonic acid groups on the surface of polydopamine (PDA)-encapsulated SiO2 nanoparticles. To bridge the gap between heterogeneous and homogeneous catalysis, surface functionalization of silica gel is an elegant procedure. The morphology, structure, and physicochemical features were specified using different analytical techniques including field emission scanning electron microscopy (FESEM), Fourier transformed infrared spectroscopy (FT-IR), high resolution-transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDS), wavelength-dispersive X-ray spectroscopy (WDX), X-ray photoelectron spectroscopy (XPS), and back titration. The SiO2/PDA–SO3H nanoparticles are efficient nanocatalysts for the acetylation of many alcohols, phenols, and amines with acetic anhydride under solvent-free conditions in good to excellent yields. Moreover, the reuse and recovery of the catalyst was shown seven times without detectible loss in activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.