Abstract

AbstractFunctionalized multi‐walled carbon nanotubes (MWCNTs) via microwave‐induced polymerization modification route, and polybenzimidazole (PBI) nanocomposite films containing 0.1‐5 wt% functionalized MWCNTs were successfully synthesized. The functionalized MWCNTs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X‐ray photoelectron spectroscopy (XPS). The results verify that the polymer was successfully grafted to the MWCNTs with a polymer layer that was several nanometers thick. The TGA results showed that the quantity of the attached polymer reached approximately 9.4 wt%. The mechanical properties of the nanocomposite films were measured by tensile test and dynamic mechanical analysis (DMA). The tensile test results indicated that the Young's modulus increased by about 43.9% at 2 wt% CNT loading, and further modulus growth was observed at higher filler loading. The DMA studies indicated that the nanocomposite films had a higher storage modulus than pure PBI film in the temperature range of 30‐300°C, and the storage modulus was maintained above 0.82 GPa. Simulation results confirmed that the PBI nanocomposite films had desirable mechanical properties for use as a protective coating. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.