Abstract

This work was focused on preparation and characterizations of chitosan blended polyamide-6 nanofibers by a new single solvent system via electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural and thermal properties of the polyamide-6/chitosan nanofibers were analyzed by using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, Raman spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented and had good incorporation of chitosan. FT-IR results indicated that the amino groups of chitosan existed in the blended nanofibers. TGA analysis revealed that the onset degradation temperature was decreased with increasing chitosan content in the blended nanofibers. The morphological features of the cells attached on nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/chitosan blended nanofibers were analyzed by in vitro cell compatibility test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call