Abstract

Thermosensitive crosslinked polymer latexes have been synthesized by precipitation polymerization of N-isopropylmethacrylamide (NIPMAM) as a main monomer, methylene bis-acrylamide (MBA) as a crosslinker, and potassium persulfate (KPS) as the initiator. Polymerizations kinetics were first investigated by studying both the influence of crosslinker (MBA) and initiator (KPS) concentrations and temperature effects on the polymerization conversion, the particle size, and water-soluble polymer (WSP) as a function of time. Particle size analysis by Scanning Electron Microscopy (SEM) showed that a short nucleation step afforded the synthesis of highly monodispersed latexes. In addition, a strong dependence of WSP formation on MBA and KPS concentration and polymerization temperature was found, as well. Comparison of particle size by SEM and quasielastic light scattering clearly evidenced the dramatic effect of temperature on particle size. Lower critical solubility temperatures (LCST) of latexes were determined and compared. Finally, based on these results, the mechanism of particle formation in this polymerization process is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1823–1837, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.