Abstract

A poly(N-isopropylacrylamide) (PIPAAm) grafted poly(dimethylsiloxane) (PDMS) surface was prepared as a temperature-responsive cell culture surface by using electron beam (EB) irradiation. Different chemical treatments to modify the bare PDMS surface were investigated for subsequent grafting of PIPAAm, and treatment conditions were optimized to prepare the temperature-responsive cell culture surface. The PDMS surface was initially activated to form silanol groups with conventional O2 plasma or hydrochloric acid (HCl) treatment. Activated PDMS surfaces were individually immobilized with three different conventional silane compounds, i.e., 3-mercaptopropyltrimethoxysilane (MerTMS), 3-methacryloxypropyltrimethoxysilane (MetTMS), and 3-aminopropyltrimethoxysilane (AmiTMS). O2 plasma treatment made PDMS more hydrophilic. In contrast, PDMS surfaces activated with HCl treatment were relatively hydrophobic. Observation of the activated PDMS surface modified with MerTMS, MetTMS, and AmiTMS indicated that these silane compounds had been favorably immobilized on plasma-treated PDMS surfaces. FT-IR/ATR analysis demonstrated that immobilized silane compounds enabled PIPAAm grafting on the PDMS surface. Cell attachment and detachment analysis also suggested that the PDMS surface sequentially treated with O2 plasma and AmiTMS compound was a substrate appropriate for preparing a temperature-responsive cell culture surface by EB irradiation-induced PIPAAm grafting method. The intelligent surface may further be applied to mechanically stretchable temperature-responsive cell culture surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.