Abstract
Abstract An innovative eccentric rotor extruder (ERE), which can generate continuous elongation flow, was used to prepare the poly(L-lactide) (PLLA)/poly(ethylene glycol) (PEG)/organo-modified montmorillonite (OMMT) nanocomposites. The morphology was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and showed that the OMMT nanoparticles were uniformly dispersed in the matrix and mainly existed in intercalation mode. The influence of OMMT on the rheological behavior of plasticized PLLA was investigated by dynamic rheological measurements, showing greater improvement of rheological properties compared to that of PLLA/PEG blend. The crystallization behavior and crystalline structures were studied by differential scanning calorimetry (DSC) and XRD, respectively, and showed that the presence of OMMT further speeds up the crystallization rate of plasticized PLLA. However, the crystallization rate and crystallinity had a slight downward trend at high OMMT content because of the inhibition effect of the OMMT percolation network structure. Polarizing optical microscopy (POM) was further carried out and proved that the OMMT nanoparticles as a heterogeneous nucleating agent can increase the spherulite growth rate and nucleation density. The thermal stability was investigated by thermogravimetric analysis and indicated that the addition of OMMT at low concentration can improve the thermal stability of plasticized PLLA more effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.