Abstract
The solid-phase synthesis resin with high loading capacity was prepared through grafting poly (ethylene glycol) acrylate monomer from Merrifield resins via activators generated by electron transfer atom transfer radical polymerization. The grafted resins demonstrate well-swellability in both polar and nonpolar solvent such as dichloromethane, dimethylformamide, ethanol, tetrahydrofuran, acetonitrile, methanol and water. Particularly, the swelling ability of the grafted resin has reached two-fold of Merrifield resin in the polar solvent such as acetonitrile, methanol and water, and it enable high functional loadings up to 0.5–1.2mmolg−1 compared with the conventional polystyrene-grafting-poly (ethylene glycol) (0.15–0.25mmolg−1). This resin was derived to be used for synthesis of a difficult sequence-acyl carrier protein fragment 65-74 (ACP 65-74). The quantity and purity of peptide obtained from the grafted resin were higher than when the commercial Wang resin was used. The synthesis efficiency enhanced with the increase of grafting chains’ length within the range of hydroxyl capacity at 0.5–1.0mmolg−1. It was relative that the longer grafting chains were favor to suppress the hydrophobicity of the Merrifield resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.