Abstract

In humans, excessive bleeding during civilian accidents, and surgery account for 40% of the mortality worldwide. Hence, the development of biocompatible hemostatic materials useful for rapid hemorrhage control has become a fundamental research problem in the biomedicine community. In this study, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method for rapid hemostasis. The formation of GTC microparticles occurs via polyelectrolyte interactions between gelatin and k-carrageenan as well as hydrogen bonding from tannic acid. In addition, the GTC microparticles formulated in our study showed high water adsorption ability with a low volume-swelling ratio for a particle size of 46 μm. In addition, the GTC microparticles displayed >80% biocompatibility in NIH 3T3 cells and <5% hemocompatibility in hemolysis ratio tests. Notably, the GTC microparticles induced rapid blood clotting in 50 s and blood loss of approximately 46 mg in the femoral artery of BALB/c female mice with a 100% survival rate that was significantly better than the control group (blood clot time:250 s; blood loss: 259 mg). Thus, the findings from our study collectively suggest that GTC microparticles may play a promising clinical role in medical applications to tackle hemorrhage control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.