Abstract
Phycocyanin was microencapsulated by an extrusion method using alginate and chitosan as coating materials. This work was aimed to optimize the encapsulation process, characterize the physicochemical properties of microcapsules, and evaluate the storage stability and in vitro release performance. The optimum process conditions for preparing microcapsule gained from the single factor experiments were as follows: alginate content 2.5%, ratio of phycocyanin to alginate 1.5:1, content of calcium chloride 2.5%, and chitosan content 2.0%. Phycocyanin/alginate/chitosan microcapsules (PACM) were found to have compact spherical shape with mean diameters of 1.03mm, whereas phycocyanin/alginate microspheres (PAM) were internal porous spherical appearances with mean diameters of 1.81mm. Storage stability study showed that encapsulation by alginate and chitosan conferred greater ability to phycocyanin against temperature during storage. In vitro release study revealed that both PAM and PACM could be resistant against acidic environment, and would rapidly release phycocyanin under mild alkali condition. The sustained-release profile of phycocyanin from PACM was superior to that from PAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.