Abstract

Phthalocyanine green nano pigment was prepared using supercritical gas antisolvent (GAS) process based on the SC-CO2 method. Thermodynamic models were developed to study the volume expansion and operating conditions of the GAS process. Peng-Robinson EoS were applied for binary (CO2 and DMSO) and ternary (CO2, DMSO, and pigment) systems. A Box–Behnken experimental design was used to optimize the process. Influences of temperature (308, 318 and 328 K), pressure (10, 15 and 20 MPa) and solute concentration (10, 40 and 70 mg/mL) were studied on the particles size and their morphology. The fine particles produced were characterized by SEM, DLS, XRD, FTIR and DSC. Experimental results showed a great reduction in size of pigment particles in comparison to the original particles. The mean particle sizes of nanoparticles were obtained to 27.1 nm after GAS based on SC-CO2 method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call