Abstract
Stereolithography is a popular three-dimensional (3D) printing technology, which is widely used for manufacturing ceramic components owing to its high efficiency and precision. However, it is a big challenge to prepare SiC ceramic slurry with high solid content for stereolithography due to the strong light absorption and high refractive index of dark SiC powders. Here, we propose a novel strategy to develop photosensitive SiO2/SiC ceramic slurry with high solid content of 50–65 vol% by adding spherical silica with low light absorbance and applying a stacking flow model to improve the solid content of the slurry. The as-prepared slurry exhibits excellent stereolithography properties with a dynamic viscosity lower than 20 Pa s and curing thickness more than 120 μm. Therefore, it can be successfully applied for stereolithography-based additive manufacturing of SiC green bodies with large size (100 mm), sub-millimeter accuracy (0.2 mm), and complex structure. The stacking flow model also shows immense potential for the stereolithography of other dark-color ceramics with high solid content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.