Abstract
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.