Abstract
Two types of photoluminescent carbon dots (CDs)-embedded polyelectrolyte (PE) microcapsules were successfully prepared via the layer-by-layer (LbL) assembly approach on sacrificial templates. For the first type, the PE microcapsules with CDs embedded in the cavity were produced from assembly of five pairs of poly(sodium 4-styrensulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on CDs-pre-loaded meso-porous silica. For the second type, the PE microcapsules with CDs embedded in the wall were made of CDs and PAH, which were derived from SiO2 particles as templates. Microscope images confirmed the introduction of CDs into the two CDs-embedded microcapsules. These two microcapsules also retained the optical properties of free CDs. Photoluminescence spectra revealed that the two types of microcapsules had excitation-dependent photoluminescence behavior. When the excitation wavelength changed from 280 to 340nm, photoluminescence emission peak of the PE microcapsules with CDs embedded in the cavity shifts from 369 to 377nm, while for microcapsules with CDs embedded in the wall, emission peak shifts from 367 to 390nm. Due to low toxicity, good hydrophilicity and photoluminescence properties of CDs, these two kinds of photo-luminescent microcapsules have competitive potential for application in carriers for imaging, drug delivery and biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.