Abstract

A chemically durable glass microsphere containing a large amount of phosphorus is useful for in situ irradiation of cancers, since they can be activated to be a beta-emitter with a half-life of 14.3 d by neutron bombardment. When the activated microspheres are injected to the tumors, they can irradiate the tumors directly with beta-rays without irradiating neighboring normal tissues. In the present study, P+ ion was implanted into silica glass microspheres of 25 microm in average diameter at 50 keV with nominal doses of 2.5 x 10(16) and 3.35 x 10(1)6 cm(-2). The glass microspheres were put into a stainless container and the container was continuously shaken during the ion implantation so that P+ ion was implanted into them uniformly. The implanted phosphorus was localized in deep regions of the glass microsphere with the maximum concentration at about 50 nm depth without distributing up to the surface even for a nominal dose of 3.35 x 10(16) cm(-2). Both samples released phosphorus and silicon into water at 95 degrees C for 7 d. On the basis of the previous study on P+-implanted silica glass plates, the silica glass microspheres containing more phosphorus which is desired for actual treatment could be obtained, without losing high chemical durability, if P+ ion would be implanted at higher energy than 50 keV to be localized in deeper region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.