Abstract

Recently, using oxidized regenerated cellulose (ORC) to build a hydrogel system on promoting healing in wounds has a fast-growing market. However, it remains a challenge to improve the degree of oxidation of regenerated cellulose (RC) and to prepare matrices that are uniquely responsive to the wound environment. Herein, highly oxidized aldehyde-based cellulose from porous RC was prepared by NaBH4-HCl swelling and then NaIO4 oxidation pathway. Chitosan (CS), ethylenediamine-cyclodextrin (EDA-CD) along with ORC have been used to construct hydrogel matrices that are pH-responsive and capable of controlled drug release for use as future wound dressings. And zinc oxide nanoparticles (ZnO NPs) with antimicrobial effect and ibuprofen (IBU) with analgesic effect were piggybacked into the hydrogel system. XRD was used to study the presence of ZnO. SEM was used to observe the surface structure of the prepared hydrogel. TEM was used to observe the particle size of the ZnO NPs. Meanwhile, the oxidation conditions of the ORC were explored. Furthermore, the mechanical, swelling, water retention, cytotoxicity, bacterial inhibition properties and treatment effect, which are closely related to the application of wound dressing, were carefully researched. The unique characteristics of prepared hydrogel, including pH-responsive degradability and sustained release properties of IBU, were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.