Abstract

Various polyethylene terephthalate (PET)/clay nanocomposites containing a commercial organoclay (organophilic montmorillonite nanoclay [OMMT]) and a monomer‐activated OMMT (remodified OMMT) were prepared via in situ interlayer polycondensation of dimethyl terephthalate and ethylene glycol. In order to remodify the commercial OMMT nanoparticles, a diacid chloride monomer was applied. The prepared nanocomposites were characterized by diverse methods, including X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and intrinsic viscosity measurements. The results of the study revealed that the PET/(remodified OMMT) nanocomposites possess a better state of clay dispersion as well as significantly better thermal properties as compared with the PET/OMMT nanocomposites. Moreover, the PET/(remodified OMMT) nanocomposites showed higher crystallization temperature, degree of crystallinity, maximum degradation temperature, and lower half‐time of crystallization than that of the PET/OMMT nanocomposites. It was found that the remodification process for OMMT led to less of a foaming problem during in situ polymerization. J. VINYL ADDIT. TECHNOL., 21:70–78, 2015. © 2014 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.