Abstract

The present study aims to immobilize the uricase enzyme on magnetic nanowires and to examine its potential for use in the treatment of gout. For this, Au/Ni/Au nanowires were synthesized using a polycarbonate membrane template by the sequential electrodeposition of Au, Ni, and Au, respectively. The uricase enzyme was covalently attached to these nanowires and was also coated with PEG. Optimum enzymatic conditions, kinetic parameters, thermal, storage, and operational stability were determined by performing enzymatic activity tests of free and immobilized uricase. Additionally, the efficacy of both enzyme preparations in artificial human serum and the presence of protease was also investigated. Experimental results showed that immobilized uricase showed higher stability than free uricase in all studied conditions. The potential of immobilized uricase to oxidize uric acid in artificial serum was also investigated and it was found that immobilized preparation demonstrated approximately 6 times higher activity than that of the free enzyme. The results of this study showed that uricase-attached nanowires oxidized uric acid effectively and are promising in the treatment of gout.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call