Abstract

A type of paraffin phase-change microcapsule for thermal insulation of exterior walls was prepared by in situ polymerization of low-softening-point paraffin (46°C) as core material and acrylic copolymer as shell. The surface morphology, phase-change thermal properties, and thermal stability were characterized by scanning electron microscopy, laser particle size distribution analysis, differential scanning calorimetry, and thermogravimetric analysis, respectively. The results showed that, for polymerization reaction temperature of 75°C and paraffin/acrylic copolymer mass ratio of 1.8, the microcapsules prepared at rotation speed of 1600 r/min with 8% emulsifiers were spherical particles with smooth surface and average particle size of 0.68 μm. The phase-change temperature and latent heat storage capacity of the microcapsules were 47.8°C and 174 J/g, respectively. The paraffin phase-change microcapsules obtained using the optimum synthesis condition were mixed in a metakaolin-based geopolymer coating at different proportions, and the thermal insulation ability of the resulting phase-change thermal energy storage coating characterized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call