Abstract

AbstractCoaxial electrostatic spinning (co‐electrostatic spinning) technology has greatly expanded the versatility of the preparation of core–shell polymer nanofibers and has found a wide range of applications in the environmental and biological fields. Here we present a method for the preparation of coaxial nanofibers using polyacrylonitrile (PAN) and polyurethane (PU) as raw materials. It was found that the tensile strength ranges from 2.14 to 4.07 MPa with the increasing spinning speed of the nucleated PU layer, and the elongation at break was up to 95.09% for M6:4, which was three times higher than that of the original MPAN (30.54%), and the toughness of the nanofiber film was also significantly improved. Finally, the oil/water separation capacity of the coaxial nanofiber membrane was investigated, and the results showed that the separation fluxes for various oil compounds ranged from 2380.18 to 3130.17 L·m−2·h−1, with separation efficiencies above 99%. This study not only investigates the effect of different flow rates of core (PU)/shell (PAN) on the performance of coaxial electrostatic spun nanofiber membranes, but also provides a new insight into the coaxial electrostatic spinning process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.