Abstract
As one of the main pollutants of water pollution, the potential toxicity of heavy metal ions always threatens the safety of human and nature. Therefore, how to effectively remove heavy metal ions has become an important research topic in environmental protection. In the existing research, adsorption method is outstanding from many methods because of its high adsorption efficiency and easy operation. In this study, different generations of hyperbranched polyamide-amine (PAMAM) were grafted onto PVDF membrane to obtain the membrane with high adsorption capacity for heavy metal ions. The structure and physicochemical properties of the membranes were evaluated by means of fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FE-SEM), element analyzer and X-ray photoelectron spectroscopy (EDX). At the same time, various factors affecting the adsorption process were studied, and it was found that the adsorption behavior of copper ion (Cu2+) on the membrane conformed to the pseudo-first-order kinetic model and Langmuir isotherm model. Moreover, after comparing the adsorption effect of the modified membranes grafted with different generations of PAMAM, it was found that the membrane grafted with the third generation PAMAM had the best adsorption when the solution pH was 5, and its maximum adsorption capacity could reach 153.8 mg/g. After five adsorption-desorption cycles, its adsorption capacity can reach 72.83% of the first test, indicating that it has good recycling performance. The results show that the adsorption membrane has good application potential and research value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.