Abstract

Heteroatom doping technology is of great significance for adsorption. However, the effect of P with relatively lower electronegativity (2.19) doped in the π-electron system and phosphorus-containing functional groups on the adsorption has always been neglected. Herein, P-doped biochar (PBC) was successfully synthesized via the in-situ activation method and applied in a bath experiment and a long-term fixed-bed dynamic adsorption for sulfamethoxazole (SMX) removal. Compared to pristine BC, the pHpzc, ash content and graphitization degree of PBC would be reduced significantly after phosphoric acid (H3PO4) was treated, but it gained a large specific surface area (SSA = 233 m2 g−1), as well as abundant surface functional groups. In the adsorption process, the behavior of SMX adsorbed onto PBC conformed to pseudo-second-order kinetic and Langmuir models in batch experiments. Its excellent adsorption capacity (148.62 mg g−1) benefited from a large number of functional groups. DFT calculation indicates that the C3-P-O configuration mainly promoted the adsorption of SMX. It is speculated that the hydrogen-bond interaction between SMX and C3-P-O was the main adsorption mechanism, and electrostatic and π-π EDA interaction also contributed. Various parameters during the dynamic process were thoroughly explored. The saturated adsorption capacity of the column would be promoted when influent SMX concentration and bed depth increased, but negatively correlated with solution pH and influent rate. Moreover, PBC fixed-bed column for SMX removal was well fitting Thomas, Yoon-Nelson and BDST models, which provided a predictable strategy for practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.