Abstract

The improvement of electrochemiluminescence (ECL) intensity in luminol, a classic electrochemiluminescent material, remains a controversial topic. In this study, synthesis of acetylene black oxide (ACETO) through simple air annealing was successful in introducing oxygen-containing groups and defects, which can act as active sites for the oxygen reduction reaction (ORR) and exhibit excellent catalytic activity. By introducing the two-electron (2e–) ORR into the cathode ECL system of luminol, integration of ACETO and luminol allows for in situ generation of dissolved oxygen into reactive oxygen species (ROS), thereby enhancing the ECL intensity of luminol. It is worth noting that iron–nitrogen–carbon (FeNC), as a secondary antibody (Ab2) label, can catalyze the decomposition of H2O2, the product of 2e– ORR, into ROS to achieve ECL amplification. Alpha–fetoprotein (AFP), an important tumor marker, was successfully detected with a detection limit of 0.01 pg/mL, indicating that this ECL signal amplification strategy has broad application prospects in biological analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.