Abstract

Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol–gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call