Abstract

In this study, ordered meso-macroporous titania–silica–polyoxometalate (HPW/SiO2–TiO2) material was prepared in one-pot by evaporation-induced self-assembly (EISA) method, with non-ionic surfactant (P123) and monodisperse polystyrene microspheres applied as co-structure-directing agents. And the oxidative desulfurization (ODS) application of as-synthesized hierarchical nanocomposite materials was tested in model fuel. The characterization results of catalyst suggested that Keggin-type polyoxometalate was successfully incorporated into the ordered meso-macroporous SiO2–TiO2 framework. Moreover, the effect of Lewis acid center of the HPW/SiO2–TiO2 catalyst on ODS process was investigated. The optimum proportion of titanium and silicon ratio on catalyst was found to be 1:1, which exhibited remarkable catalytic performance on aromatic sulfur compounds at mild conditions. It revealed that Lewis acid sites played an important role in selectively adsorb DBT and its derivatives. What’s More, the combination of Lewis acid sites and ordered meso/macroporous architecture of catalyst will further facilitated the mass transport in ODS process. No decrease in the activity was observed after six runs, indicating a good stability of as-prepared catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call