Abstract

This study aimed to prepare open-cell foams using a blend of long-chain branched polypropylene and polyolefin elastomer (LCBPP/POE) for the production of reusable oil absorbents. The supercritical CO2 foaming process was conducted using a two-step batch rapid depressurization method. This unique two-step foaming approach significantly expanded the temperature and pressure windows, resulting in more uniform cells with smaller sizes, ultimately leading to higher expansion ratios and an increased open cell content. The foaming process was optimized by adjusting parameters, such as the LCBPP/POE ratio, foaming temperature, and foaming pressure, reaching a maximum open cell content of 97.6% and a maximum expansion ratio of 48. The influence of polypropylene (PP) crystallization was investigated with the aid of scanning electron microscopy and differential scanning calorimetry. Furthermore, the hydrophobic and lipophilic characteristics of the LCBPP/POE open-cell foam were determined via contact angle measurements and oil/water separation tests. Oil absorption tests revealed that the blended LCBPP/POE foam has a higher oil absorption capacity than that of the pure LCBPP foam. The cyclic oil absorption tests demonstrated the outstanding ductility and recoverability of the LCBPP/POE open-cell foam in comparison to those of the pure LCBPP foam. Over 10 cycles, the LCBPP/POE foam maintained a substantial adsorption capacity, retaining 99.3% of its initial oil absorption capacity. With its notable features, including a high open cell content, excellent hydrophobic and lipophilic characteristics, superior oil absorption capacity, impressive cyclic oil absorption performance, and robust reusability, LCBPP/POE open-cell foams exhibit significant promise as potential oil adsorbents for use in oil spill cleanup applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call