Abstract

In this work, a new and efficient composite LDH with high adsorption power using layered double hydroxide (LDH), 2,4-toluene diisocyanate (TDI), and tris (hydroxymethyl) aminomethane (THAM) was designed and prepared, which was used as an adsorbent to adsorb diazinon from contaminated water. The chemical composition and morphology of the adsorbent were evaluated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Energy dispersive X-ray (EDX) and Field emission scanning electron microscopy (FESEM) techniques. Also, the optimal conditions for adsorption of diazinon from water were determined by LDH@TDI@THAM composite. Various parameters like the effect of adsorbent dosage, pH, concentration and contact time of diazinon were studied to determine the optimal adsorption conditions. Then, different isotherm models and kinetic adsorption were used to describe the equilibrium data and kinetic. Also, the maximum adsorption capacity is obtained when the pH of the solution is 7. The maximum adsorption capacity for LDH@TDI@THAM composite was 1000 mg/g at 65 °C and the negative values of ΔG indicate that the adsorption process is spontaneous. After that, studying the reusability of LDH@TDI@THAM composite showed that the removal of diazinon by LDH@TDI@THAM was possible for up to four periods without a significant decrease in performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call