Abstract

3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) was first used as precursor as well as selective stationary phase to prepare the sol-gel-derived TMSPMA-hydroxyl-terminated silicone oil (TMSPMA-OH-TSO) solid-phase mircroextraction (SPME) fibers for the analysis of aroma compounds in beer. TMSPMA-OH-TSO was a medium polarity coating, and was found to be very effective in carrying out simultaneous extraction of both polar alcohols and fatty acids and nonpolar esters in beer. The extraction temperature, extraction time, and ionic strength of the sample matrix were modified to allow for maximium sorption of the analytes onto the fiber. Desorption temperature and time were optimized to avoid the carryover effects. To check the matrix effects, several different matrices, including distilled water, 4% ethanol/water (v/v) solution, a concentrated synthetic beer, a "volatile-free" beer and a real beer were investigated. Matrix effects were compensated for by using 4-methyl-2-pentanol as internal standard and selecting the "volatile-free" beer as working standard. The method proposed in this study showed satisfactory linearity, precision and detection limits and accuracy. The established headspace SPME-gas chromatography (GC) method was then used for determination of volatile compounds in four beer varieties. The recoveries obtained ranged from 92.8 to 105.8%. The relative standard deviations (RSD, n = 5) for all analytes were below 10%. The major aroma contributing substances of each variety were identified via aroma indexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.