Abstract

AbstractA novel Nano/submicrofiber catalyst was prepared via electrospinning technology from poly (vinyl pyrrolidone) (PVP) and nano‐TiO2. First, nano‐TiO2 particles were added into the mixture of ethanol and deionized water, the mass ratio of ethanol and deionized water was 1 : 1, the TiO2 suspension was obtained after 1 h with ultrasonic treatment and centrifugal effect, Then PVP was added into the above‐mentioned suspension and the content of PVP in the sol was 28%. The TiO2/PVP solution was electrospun with different voltage. The effects of the content of TiO2 and electrospinning voltage on diameter of nano/submicrofiber were studied. The nano/submicrofiber catalyst was characterized by scanning electron microscopy, transmission electron microcopy, X‐ray diffraction, and Fourier transform infrared. The results show that the diameter of nano/submicrofiber increases with an increase of the content of nano‐TiO2 and decreases with the increase of electrospinning voltage. The analytical result showed that the nano‐TiO2 particles were well dispersed in the matrix of PVP, moreover, the crystal type of nano‐TiO2 was a mixture of anatase and rutile and the diameter of nano‐TiO2 particles in the nano/submicrofiber is in the range of 20–60 nm and the nano‐TiO2 particle was monodisperse, and the nano‐TiO2 particle and PVP molecule was connected by a hydrogen bonding. This nano/submicrofiber catalyst has a high efficiency on degradation on CH2O. 56.8 percent of CH2O was degraded under ultraviolet radiation in 80 min when the content of nano‐TiO2 is 20% in nano/submicrofibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.