Abstract
ABSTRACTMagnetic Fe3O4/waterborne polyurethane nanocomposites were synthesized based on waterborne polyurethane (WPU) and amino‐functionalized Fe3O4 by in situ polymerization. The Fe3O4 nanoparticle was found to be uniformly distributed in Fe3O4/WPU nanocomposites with linear or crosslinked structure. In addition, the formation mechanism and magnetic conduction mechanism of stable inorganic–organic nanocomposites were discussed. The experimental results showed that the thermal stability, magnetic, and mechanical properties of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by amino functionalized Fe3O4. Furthermore, the defoaming property of the emulsion and the hydrophobic property of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by the 1‐hexadecanol‐terminated prepolymer. What more, polycaprolactone (PCL)‐based Fe3O4/WPU nanocomposites have excellent mechanical properties (The tensile strength is over 30 MPa, the elongation rate is above 300%.) and magnetic properties. Magnetic Fe3O4/waterborne polyurethane nanocomposites will be used in the field of hydrophobic and microwave absorbent materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48546.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.