Abstract

Biomedicine requires materials able to respond to specific needs without affecting the organism. Organic–inorganic fibrillar polymeric matrices possess unique properties that may fulfill these needs. In the present study, different topology-controlled poly(ε-caprolactone)-based fibrillar matrices containing glycine betaine at varying concentrations (0.5, 1, and 2% w/v) were prepared via electrospinning. The matrices were used as substrates in calcium carbonate crystallization assays with gas diffusion to obtain a single organic–inorganic hybrid material. The resulting matrices and crystalline material were characterized using spectroscopic, microscopic, and thermogravimetric analyses. The incorporation of glycine betaine into a poly(ε-caprolactone) mesh modified the diameter of the fibers, without affecting the thermal behavior of the matrices. However, the chemical and morphological characteristics of the matrices did influence in vitro inorganic mineralization. The thermogravimetric analysis of the matrices, performed after the mineralization tests, demonstrated the existence of a new organic–inorganic hybrid material with unique properties, which is discussed in the present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call