Abstract

A novel polyimide (PI) with broad-spectra response, high photocatalytic activity and stability under super acidic conditions (pH = 0) was synthesized via polymerizing method. Two types of perylene-cored materials (PDIAN and PTCDA) with anhydride and diamine respectively, were applied as precursors for PI polymerization. The as-prepared PI was optimized at 1:1 initial molar ratio of PDIAN to PTCDA. Using common PI (synthesized from melamine and pyromellitic dianhydride) as comparison, the Cr(VI) reduction rate was boosted from 25.4% to 96.6% within 120 min light irradiation. The corresponding rate constant by PI(PDIAN/PTCDA) was estimated to be ca. 11.7 times relative to that by common PI. The boosted performance was ascribed to the strong π-π conjugation from diperylene cores, which can decrease the photoluminescence intensity and electrochemical impedance, so as to promote the separation and transfer of photogenerated electron-hole pairs. In addition, the optimized PI(PDIAN/PTCDA) displayed wide-spectra response, which can still work under 730 nm light. The influencing factors toward Cr(VI) reduction were also clarified to be beneficial at lower pH and increased concentration of hole scavenger. After five cycles at pH 0, the PI still maintained excellent redox activity and structural stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.