Abstract

Multi-compartmentalized capsosomes are polyelectrolyte capsules with liposomes as cargo, and are prepared by combining liposomes and polymer capsules. They offer additional functionality while maintaining the advantages and compensating for the weak points of both systems. In this study, a polyelectrolyte multilayered liposome was prepared by alternating adsorption of negatively charged sodium hyaluronate (HA) and positively charged chitosan (CH) on the surface of a cationic core liposome (CL) via layer-by-layer (LbL) deposition. Then, smaller sized liposomes (L) were coated onto the multilayered liposome. Lastly, the particle surfaces were coated with HA as a capping layer to obtain a novel type of capsosome with a liposomal core. The amount of adsorbed liposome was measured for different pH values (pH 2–10) and with liposome solutions of different concentrations (1–3%). The highest liposome adsorption occurred at pH 10 in the 3% solution, respectively. Finally, capsosomes in the size range of 500nm to 2μm were observed and the attached liposomes were located both on the surface and within the polymer shell. In conclusion, the cell-mimicking, liposome-based capsosomes could have infinite applications in the field of medicine, pharmaceuticals, and cosmetics as compartmentalized microreactors, multi-drug delivery systems with controlled release, or functional artificial cells in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.