Abstract

Aluminum-ion batteries, as a feasible substitute for lithium-ion batteries, have the advantages of high safety, high capacity, low cost and environmental friendliness. However, the cathode material is one of the key factors restricting the performance and practical application of aluminum-ion batteries. Sulfur is becoming a promising cathode material for aluminum-ion batteries due to its considerable theoretical specific capacity. However, the poor conductivity of elemental sulfur seriously limits the development of aluminum-sulfur batteries. In this work, nitrogen doped three-dimensional multi-stage porous carbon materials (N-C/S) were prepared, which were compounded with sulfur to prepare carbon sulfur composite cathode materials. The microstructure, phase morphology, element composition and electrochemical performance were analyzed by various characterization methods. Then, N-C/S composite was used as a positive electrode to assemble a new type of aluminum-sulfur batteries, and its performance was evaluated. This novel high-performance N-C/S composite cathode holds great potential in future high-performance aluminum-sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call