Abstract

Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call