Abstract

Ni(OH)2/TiO2 nanorod composite porous film with a novel structure and remarkable electrochromic (EC) behavior was prepared on a fluorine doped tin oxide (F:SnO2; FTO) coated glass substrate by hydrothermal and solvothermal techniques. A pure Ni(OH)2 porous film was also prepared on another FTO substrate by the solvothermal technique for comparison. The growth process of Ni(OH)2 on the surface of TiO2 nanorod layer was investigated carefully. The component, morphology and microstructure of the films, as well as their EC performances including transmittance, cyclic voltammetry (CV), cycle life and response time were characterized. Compared with those of the pure Ni(OH)2 film, the EC performances of Ni(OH)2/TiO2 composite film have exhibited obvious enhancement owing to the good interface bonding, Ni(OH)2 porous structure, TiO2 nanorod layer and interpenetrating structure. Furthermore, it is noteworthy that the transmittance contrast in near infrared light area was distinctly improved, and even exceeded 95% after the 100th cycle, promising the Ni(OH)2/TiO2 nanorod composite porous film a potential EC application in near infrared light area in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.