Abstract

Ni–Cu/Mg/Al bimetallic catalysts were prepared by the calcination and reduction of hydrotalcite-like compounds containing Ni2+, Cu2+, Mg2+, and Al3+, and tested for the steam reforming of tar derived from the pyrolysis of biomass at low temperature. The characterizations with XRD, STEM-EDX, and H2 chemisorption confirmed the formation of Ni–Cu alloy particles. The Ni–Cu/Mg/Al bimetallic catalyst with the optimum composition of Cu/Ni = 0.25 exhibited much higher catalytic performance than the corresponding monometallic Ni/Mg/Al and Cu/Mg/Al catalysts in the steam reforming of tar in terms of activity and coke resistance. The catalyst gave almost total conversion of tar even at temperature as low as 823 K. This high performance was related to the higher metal dispersion, larger amount of surface active sites, higher oxygen affinity, and surface modification caused by the formation of small Ni–Cu alloy particles. In addition, the Ni–Cu/Mg/Al catalyst showed better long-term stability than the Ni/Mg/Al catalyst. No obvious aggregation and structural change of the Ni–Cu alloy particles were observed. The coke deposition on the Ni–Cu/Mg/Al catalyst was approximately ten times smaller than that on the Ni/Mg/Al catalyst, indicating good coke-resistance of the Ni–Cu alloy particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.