Abstract

Abstract We fabricated porcelain ceramics embedded with WO3 nanoparticles (NPs) for radiation shielding applications. The linear attenuation coefficients were experimentally determined to study the efficiency of the manufactured samples against gamma rays. When the thickness increases from 0.5 to 2 cm, there is a reduction in the photon transmission through the ceramics. At 0.662 MeV, the transmission factor for Porc-1 changes from 0.91 (thickness: 0.5 cm) to 0.83 (thickness: 1 cm), and to 0.69 (thickness: 2 cm). From I/I 0 results, we found that attenuation performance is improved as the sample thickness increases. We evaluated the mass attenuation coefficient (MAC) and examined the influence of the concentration of WO3 NPs on the MAC. We found that Porc-5 which contains a greater quantity of WO3 NPs compared to the other samples has the highest MAC. At 0.06 MeV, the HVL (half value layer) for Porc-1 is 1.063 cm, while at 1.333 MeV this increases to 5.247 cm. Meanwhile, for Porc-2, at 0.06 MeV, a thin layer of thickness 0.806 cm is required to shield 50% of the photons, and at 1.333 MeV, the thickness of the layer must increase to 5.058 cm to shield the photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call