Abstract

To investigate the feasibility of implanting the biocomposite of calcium phosphate cement (CPC)/polylactic acid-polyglycolic acid (PLGA) into animals for bone defects repairing, the biocomposite of CPC/PLGA was prepared and its setting time, compressive strength, elastic modulus, pH values, phase composition of the samples, degradability and biocompatibility in vitro were tested. The above-mentioned composite implanted with bone marrow stromal cells was used to repair defects of the radius in rabbits. Osteogenesis was histomorphologically observed by using an electron-microscope. The results show that compared with the CPC, the physical and chemical properties of CPC/PLGA composite have some differences in which CPC/PLGA composite has better biological properties. The CPC/PLGA composite combined with seed cells is superior to the control in terms of the amount of new bones formed after CPC/PLGA composite is implanted into the rabbits, as well as the speed of repairing bone defects. The results suggest that the constructed CPC/PLGA composite basically meets the requirements of tissue engineering scaffold materials and that the CPC/PLGA composite implanted with bone marrow stromal cells may be a new artificial bone material for repairing bone defects because it can promote the growth of bone tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.