Abstract

The stockpiling of copper smelting slag (CSS) has broken the ecological environment of the mining area, and the resource utilization of CSS is an urgent requirement to promote ecological sustainable development. The optimal cementitious material ratio determines as 69:15:6:2:8 for CSS: cement clinker (CC): gypsum powder (GP):NaOH: slaked lime (SL) by analyzing the physical and chemical properties of CSS and the uniaxial compressive strengths (UCS) at 3d, 7d and 28d curing ages investigate. The uniaxial compressive strengths reached 3.55 MPa, 9.48 MPa, and 32.43 MPa. In the meantime, XRF, XRD, EDS, and SEM microscopic analysis of the prepared gelling material specimens explored the hydration products and microstructural changes of the backfill gelling system and revealed the hydration mechanism of the gelling system and the strength formation mechanism of the specimens. The results of the experimental study showed that the strength of the specimens at different maintenance ages was subject to different significance arrangements of the factors. Based on the optimized ratio of composite cementitious materials, the 28d UCS of the filler prepared by synergistic tailing sand reaches 3.88 MPa, which can meet the jksg of partial mine filler mining. Applying copper smelting slag-based gelling backfill materials (CSSM) at mine sites reduces backfill costs while effectively reducing solid waste emissions, thereby protecting the environment and promoting the realization of waste-free mines and green mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.