Abstract

Herein nanocrystalline MoSi2 with enhanced lithium storage was successfully synthesized via a sol-gel and carbonthermal reduction method. Reduction of the gel mixture of Mo precursor and Si precursor by carbon at a desired temperature resulted in the formation of MoSi2 nanoparticles. The gel mixture was obtained through the hydrolysis of TEOS and ammonium molybdate and the polymerization of hydrolysis products of TEOS. The reducing agent carbon was produced via decarburition of sucrose's hydrolysis products, which have been wrapped in the gel during its formation process. Addition of HCl to the mixed solution controlled the hydrolysis and polymerization rate, and enabled the formation of a gel mixture with homogeneously distributed hydrolysis products of ammonium molybdate, TEOS and sucrose. This achievement likely generates a novel route to synthesize non-oxide compounds such as silicide, carbide through the sol–gel and carbonthermal reduction process. In addition, the as-received MoSi2 nanoparticles showed considerable activities in the reversible lithiation and delithiation process. When using as an anode for Li-ion batteries, MoSi2 nanoparticles delivered a specific capacity of 325 mAh g−1 at C/12 and showed an increasing capacity with cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call