Abstract

A nano-crystal N-Zn/TiO2 anode film was prepared using a combined technology. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry characterizations showed that the two elements N and Zn were doped into nano-crystal TiO2 successfully. This resulted in a strong redshift in the UV-Visible spectrum. UV-Visible measurements showed that the light absorption of N719 and P3OT were complementary and covered the entire visible region. This led to a high utilization of visible light. Solar cells based on the N-Zn/TiO2 anode film were co-sensitized using P3OT and N719. The cells have a short-circuit current density of 7.91 mA/cm2, an open-circuit photovoltage of 0.659 V, and a photoelectric conversion efficiency of 2.64%. Also, the relationship among the N-Zn/TiO2-film anode’s electric structure, the dye’s LUMO, electrochemical impedance, and photoelectric conversion efficiency are discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.