Abstract

There is an urgent need for wound dressings to treat partial-thickness burns. Hydrogels are a promising material that can maintain hydration to promote necrotic tissue removal. Tilapia peptides (TP) and hydroxyapatite (HA) were incorporated into chitosan system to prepare new types of hydrogels. The hydrogels were cross-linking by tannin (TA), which were developed to promote rapid wound healing in a New Zealand rabbit partial-thickness burn model. Nanohydroxyapatite (NHA) was synthesized by coprecipitation method, which made hydrogels have a highly porous structure comprised of interconnected pores, excellent water absorption and low hemolysis. Besides, the hydrogels showed excellent antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as the cytocompatibility on endothelial cells. Moreover, the hydrogels promoted epithelial and dermal regeneration, reduce the expression of TNF-α and IL-6 and promote the skin regeneration by enhancing expression of collagen, STAT3, and VEGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.