Abstract

This investigation deals with preparation of an activated carbon in nano-scale from natural waste bio-materials of water hyacinth segments through chemical modification of water hyacinth followed by chemical and thermal activation of the material. The different parameters affecting in the chemical and thermal activation processes such as chemical types used for activation process, activation time and temperature and carbonization time and temperature for the thermal activation process were optimized to produce nano-size activated carbon. All prepared materials were evaluated as adsorbent materials for copper decontamination from industrial wastewater. The produced nano-activated carbon was characterized using X-ray diffraction (XRD), Morphological characterization (SEM), Thermal Analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The performance of the prepared nano-activated carbon was evaluated for copper ion sorption from aqueous solution using batch technique. The influence of the different parameters affecting the copper sorption process was examined. The results indicated that the prepared nano-activated carbon recorded high copper removal of 86.12% within 4hours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call