Abstract

Novel organic-inorganic hybrid membranes of polymethyl methacrylate (PMMA) containing multi-walled carbon nanotubes (MWNTs) were successfully prepared. Then, the swelling adsorption experiments of benzene/cyclohexane mixtures were employed to evaluate the performance of these membranes. Via transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry (FTIR), the effect of surface modification on the morphology and properties of carbon nanotubes and hybrid membranes were studied. The results indicated that the separation performance for benzene/cyclohexane of the hybrid membranes depended on both the polarity of carbon nanotubes and the distribution of MWNTs in PMMA. Because the dispersion of MWNTs were obviously improved after acidification and ammonization modification, the hybrid membranes including modified MWNTs showed higher performance than membranes with un-modified MWNTs. In addition, a large number of polar group were introduced in the MWNTs during modification of acidification and ammonization, which depressed obviously the physical adsorption of cyclohexane by MWNTs. Therefore, these two changes in the properties of MWNTs both improved the separation performance of hybrid membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call