Abstract

PurposeThe purpose of this paper is to fabricate a high-performance filtration electrospun nanofiber membrane with antibacterial function. The Ag nanoparticles (AgNPs) gotten by reducing AgNO3 act as antimicrobial agent. Then the AgNPs/Polyacrylonitrile (AgNPs/PAN) composite nanofiber membrane was prepared by electrospinning.Design/methodology/approachThe electrospun Ag/PAN composite membrane was prepared by one step, in which the Ag particles were acting as antibacterial agent and PAN nanofiber as the upholder of the composite mat. AgNPs were obtained by reducing AgNO3 in N,N-Dimethylformamide (DMF) solution at high temperature. Meanwhile, the PAN particles were added to DMF solution and dissolved. Then the Ag/PAN nanofiber was obtained by electrospinning.FindingsThe thinner nanofiber can be produced with PAN concentration of 12 per cent and AgNPs concentration of 10 per cent. Finally, the filtration resistance of the composite membrane with antibacterial property is as high as 99.1 per cent, and the filtration efficiency is only 83 Pa. Therefore, the AgNPs/PAN composite membrane is the ideal choice for air filtration with antibacterial property.Originality/valueThe AgNPs/PAN composite nanofiber membrane has high filtration performance for particulate matter (PM)25 and outstanding antibacterial property to Escherichia coli and Staphylococcus aureus, which can be used with masks, air-conditioning filters (including car air-conditioning filters), window screening and other similar objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.