Abstract

AbstractThe multiple bulk copolymerization method, which was developed in our previous works, was further investigated with prometryn, tetracycline, and propranolol as templates for the preparation of molecularly imprinted polymer (MIP) coatings on silicon fibers for solid‐phase microextraction. The preparation conditions (e.g., the solvent, monomer, crosslinker, component proportions, polymerization time, and number of coating procedures) were investigated systemically in an effort to enhance the coating thickness, surface morphology, and reproducibility. The methodology was examined, and some common specialties were explored in the preparation of three MIP‐coated fibers. Even after the coating procedure was repeated 10 times, the prometryn, tetracycline, and propranolol MIP‐coated fibers were prepared reproducibly with coating‐thickness relative standard deviations of 2.6, 3.0, and 5.1%, respectively; they were highly homogeneous, and a compact morphological structure was obtained. The extraction capacities of prometryn, tetracycline, and propranolol with corresponding MIP‐coated fibers were approximately 10.4, 3.9, and 3.3 times as much as those with the nonimprinted polymer (NIP)‐coated fibers, respectively, and the selectivity factors of prometryn, tetracycline, and propranolol MIP coatings for the template molecules and structural analogues were 2.2–10.4, 2.2–3.9, and 1.3–3.3, respectively, in comparison with the corresponding NIP coatings. In comparison with commercial polydimethylsiloxane/divinylbenzene coatings that were approximately 3 times thicker, the extracted amounts of prometryn, tetracycline, and propranolol were 4.2, 12.3, and 7.7 times higher with prometryn, tetracycline, and propranolol MIP coatings, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.