Abstract

Herein, it is reported an effective method to prepare novel molecularly imprinted polymers (MIP) on poly(dimethylsiloxane) (PDMS) elastomer via a combination of non-covalent imprinting approach and surface initiated reversible addition fragmentation chain transfer (SI-RAFT) polymerization for sensitive and selective detection of folic acid (FA). For this purpose, 2-(2-Methoxyethoxy) ethyl methacrylate (MEOMA), ethylene glycol dimethacrylate (EGDMA), azobisisobutyronitrile (AIBN), FA and dimethylsulfoxide (DMSO) were used as functional monomer, cross-linker, initiator, template molecule, and porogen, respectively. The adsorption behavior followed the Scatchard equation between FA and PDMS-MIP with a saturation adsorption capacity of 4.51 mg/g and pseudo-second-order kinetics with 60 min equilibrium adsorption time. Furthermore, PDMS-MIP elastomer was successfully applied for selective extraction and detection of FA from orange juice with sufficient recovery (95.5–100.5%) and relative standard deviation less than 7.0%. The limit of detection (LOD) for FA was found to be 0.0031 µg/mL with a linear range between 0.01 and 100 µg/mL and a correlation coefficient of 0.9997. Results showed the proposed method could easily, efficiently and selectively extracted FA from complex media. Note that this novel proposed method will open a new way to detect any selected molecules such as pesticide, protein, drug, etc. using molecularly imprinted PDMS elastomer materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.