Abstract

Coalbed methane is a significant source of methane in the atmosphere, which is a potent greenhouse gas with a considerable contribution to global warming, thus it is of great importance to remove methane in coalbed gas before the emission. Exploring the economical non-noble metal catalysts for catalytic methane combustion (CMC) has been a wide concern to mitigate the greenhouse effect caused by the emitted low-concentration methane. Herein, a series of Mn-doped Co3O4 catalysts have been synthesized by the environmentally friendly solid-state method. As a result, the Mn0.05Co1 catalyst performed the best CMC activity (T90 = 370 °C) and good moisture tolerance (3 vol% steam). The introduction of an appropriate amount of manganese conduced Co3O4 lattice distortion and transformed Co3+ to Co2+, thus producing more active oxygen vacancies. Mn0.05Co1 exhibited better reducibility and oxygen mobility. In situ studies revealed that methane was adsorbed and oxidized much easier on Mn0.05Co1, which is the crucial reason for its superior catalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call