Abstract

The effective utilization of charcoal and tar byproducts is a challenge for pyrolysis gasification of bamboo. Herein, the bamboo tar was modified via polymerization and acted as a new adhesive for the preparation of excellent bamboo-charcoal-derived molding activated carbon (MBAC). As compared with pristine tar and other adhesives, the aromatization of tar with phenol increased its molecular weight, oxygenic functional groups, and thermal stability, leading to the decreased blocking impact of charcoal pore and improved bonding and pyrolytic crosslinking effect between charcoal particles. These further contribute to the high mechanical strength, specific surface area, pore volume, and amount of oxygenic functional groups for fabricated MBAC. Owing to the high microporous volume of MBAC, it exhibited 385 mg·g-1 toluene and 75.2% tetrachloride gas adsorption performances. Moreover, the pseudo-first-order, pseudo-second-order, and Bangham models were used to evaluate the kinetic data. The toluene adsorption process conforms to the Bangham kinetic model, suggesting that the diffusion mechanism of toluene adsorption mainly followed intraparticle diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.