Abstract

We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2-3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3-5 d, including the time required for the crystals to grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.